Antibody Responses to a Novel Plasmodium falciparum Merozoite Surface Protein Vaccine Correlate with Protection against Experimental Malaria Infection in Aotus Monkeys
نویسندگان
چکیده
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.
منابع مشابه
Vaccine efficacy of recombinant Plasmodium falciparum merozoite surface protein 1 in malaria-naive, -exposed, and/or -rechallenged Aotus vociferans monkeys.
Protection against a lethal challenge infection of Plasmodium falciparum was elicited in malaria-naive Aotus vociferans monkeys by vaccination with the C terminus 19-kDa protein of the major merozoite surface protein (MSP-1(19)) fused to tetanus toxoid universal T-cell epitopes P30 and P2. Three of four monkeys were protected against a 10(4)-parasite challenge. Four monkeys were challenged with...
متن کاملGenetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملImmunization of Aotus monkeys with Plasmodium falciparum blood-stage recombinant proteins.
The current spread of multidrug-resistant malaria demands rapid vaccine development against the major pathogen Plasmodium falciparum. The high quantities of protein required for a worldwide vaccination campaign select recombinant DNA technology as a practical approach for large-scale antigen production. We describe the vaccination of Aotus monkeys with two recombinant blood-stage antigens (reco...
متن کاملBiochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1.
Protection against Plasmodium falciparum can be induced by vaccination in animal models with merozoite surface protein 1 (MSP1), which makes this protein an attractive vaccine candidate for malaria. In an attempt to produce a product that is easily scaleable and inexpensive, we expressed the C-terminal 42 kDa of MSP1 (MSP1(42)) in Escherichia coli, refolded the protein to its native form from i...
متن کاملA PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys
Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for ...
متن کامل